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MODELING OF ROLLED-SHEET COOLING 

A. M. Timofeev and A. A. Pyodorova UDC 536.33 

Stationary radiative and convective heat transfer on an infinite moving plate is studied numerically. A 

conjugate formulation of the problem allows one to correctly take into account the interaction between 

temperature fields of the plate and the surrounding gas medium. The determining influence of radiation on 

the formation of plate temperature is established. The effect of different regime factors on heat transfer is 

analyzed. 

The optimization of metal heat treatment and the creation of energy saving technologies in metallurgy 

require allowance for many factors in mathematical simulation of the corresponding heat transfer processes [ 1, 2 ]. 

In particular, the metallurgical quality of rolled steel is mainly determined by the temperature difference inside 

the blank during treatment. A change in temperature of 1% can lead to a 10%-decrease in yield strength, which 

in turn, will cause inhomogeneity of the strength properties of the final product [3 ]. The quality of thermal 

calculations in the traditional approach is to a considerable extent determined by knowledge of the coefficient of 

heat transfer. However, in the majority of practical cases its accurate determination can be impossible [4, 5 ]. Thus, 

the need arises to correctly analyze the heat transfer of a moving rolled sheet with the surrounding medium with 

allowance for convection and radiation. In this case, due to the mentioned problematic character of employment of 

the coefficient of heat transfer in calculations, it seems reasonable to consider the problem in a conjugate 

formulation, i.e., when the surface temperature is not a priori given but is determined in problem solution. 
We consider radiative and convective heat transfer in a conjugate formulation of the problem when cooling 

of a 2H-thick plane plate being drawn from a slot at constant velocity u0 into a motionless gas medium (Fig. 1). 

Due to the viscosity of the medium, a boundary layer is formed on the surface of the moving plate. In contrast to 

a classical boundary layer, the velocity distribution in this case is different: on the plate surface (at y = 0) the 

longitudinal velocity component is equal to the velocity of plate motion u = u0 and at an infinite distance, where 

the condition of a stationary medium holds u -- 0. 
The system of equations describing heat and mass transfer processes in the boundary layer for a medium 

with constant thermophysical properties has a form 

Ou Ov 
- ~ x + ~ = 0 ,  X>Xo, 0 < y < o o ;  (1) 

Ou Ou 02u 
U - - - l -  V - -  = v - - .  

OX dy dy 2 ' 
(2) 

OT OT 02T 
u - - + v - - = a - -  (3) 

Ox Oy Oy 2 ' 

X=Xo: - - ; o ;  (4) 
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Fig. 1. Physical model and coordinate system. 

x 

y = 0 :  u = u 0 ,  v =  0 ,  T =  TO; (5) 

y ~ oo: u ~ O , T ~ T ~  . (6) 

Heat  t ransfer  on an infinitely moving plate is described by the equation 

with the boundary  conditions 

O T  s 0 2 T s  
u o - = a  s -  x > x  o - H < y < 0  (7) 

OX Oy 2 ' ' ' 

x = x0: T s = T O , 
(s) 

o7", (9) 
y = - H :  Ox  - 0 ,  

O T  s O T  
y = O: - ~ o---~-- = - ~ ~ + E .  (1o) 

Here  

E = 

aT4w - a T  4 

1/e w+ l / e= -  1" 
(11)  

This problem was considered ignoring radiation for the first time in [6 1. The  mathematical  model suggested 

in this work for describing convective heat t ransfer  on a moving infinite surface has been repeatedly used in 

subsequent studies [7-10]. As was found in ]10 ], such problems of heat t ransfer  on a moving surface should be 

considered only in a conjugate formulation. 

To numerically solve the boundary layer equations (1)-(6) it is convinient to use the self-similar variable 

)1/2 
Uo (12) 

~ = Y  ~ x  
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as a transverse dimensionless coordinate. 

The longitudinal dimensionless coordinate is defined as 

x 

In this case the dynamic portion of the problem is reduced to the Blasius differential equation 

2 / " ' + i f ' = 0 ,  O < r / <  ~ ,  

but the boundary conditions at r/,- 0 and 7? = ~, in contrast to the Blasius equation, change places: 

r / = 0 :  / = 0 ,  f ' =  1; 

(13) 

(14) 

(is) 

form 

i 

r/--- | f = 0 .  (16) 

Energy equation (3) with the boundary conditions (4)-(6) in the chosen dimensionless variables has the 

P r f ' ~  0/9 020 _f dO - - =  2 + P r  - - ,  0 < r / <  oo, ~ 0 < ~ <  oo, 
o,7 2 

(17) 

= ~o: 0 = 0 o ; (18) 

77=0: 0 = 0 w ,  t / - ,  oo: 0 -" 00,. 

Heat transfer in the plate is described by the dimensionless relation 

dO s O20s 
BPr a~ 0~2 , ~0 < ~  < oo, 1 < ~ < 0 ,  

with boundary conditions 

(19) 

(20) 

= ~o: 0 s = 1, (21) 

dos (22) = - 1 :  

( I )  23, ~ = 0 :  o-o-o-o-~=x ~ - ~ / 2 d o  - S k O  . 
-~- r/=O 

Here 0 o is a self-similar solution of equation (17); B -- aoo/as; dp ffi E / 4 a T g  o is the dimensionless density of the 

radiation flux; the prime denotes differentiation with respect to the variable r/. 

Problem (14)-(16) is solved numerically by the method of finite differences using the approach suggested 

in [11 ]. The reliability of the obtained results is confirmed by good agreement (within 1%) with similar results 

from [7 I. 
Conjugate problems are more complex than problems in a traditional separate formulation and in each 

specific case they require their own mathematical means, which are usually based on numerical methods. In the 

given case, the general solution scheme assumes an iteration approach: the plate surface temperature is determined 
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Fig. 2. The effect of emissivity e (a) (Z = 10-a,  B = 5, Sk - 3), Stark number  

Sk (b) (Z = 10-3, B = 5, e = 0.9), conjugation parameter  Z (c) (B = 5, Sk = 3, 

e = 0.9), and parameter  B (d) (Z = 10-3, Sk = 3, e = 0.9) on the temperature  

of the plate surface, a: 1) e = 0, 2) 0.02, 3) 0.1, 4) 0.9; b: 1) Sk = 2, 2) 3, 3) 

4; c: 1) Z = 2- 10 - 4  , 2) 10 -3 ,  3) 5 . 1 0 - a ;  d: 1) B = 2, 2) 5, 3) 10. 

in section ~; using this temperature  as a boundary  condition, the temperature  distribution in the boundary  layer  

and on the plate are found by equations (17) and (20); and a new approximation for the plate surface tempera ture  

is found by the "shooting" technique, where the conjugation condition (23) serves as a residual. Boundary-value  

problems (17)-(19) and (20)-(23) are solved by the method of finite differences by an implicit scheme with a 

second-order  approximation. 

As is seen from the formulation, Pr, Sk, B, Z, and ew are the determining parameters  of the problem. For  

a m e t a l - a i r  system at temperatures  of the order  of T O _- I000 K and plate thickness H = 1 mm, these parameters  

vary within the limits Pr  = 0.7, Sk -- 2 - 4 ,  B = 2 - 1 0 ,  Z = 0 .0002-0 .005 ,  e w = 0 .02-0 .9 .  The  tempera ture  of the 

outer  region was taken to be 000 = 0.3. 
In Figs. 2a and 2b the effect of radiation on temperature is shown. Curves 4 in Fig. 2a refer  to the case 

of combined radiative and convective cooling of the plate; curve 1 refers to the case of convective cooling alone. A 

comparison of these curves indicates the determining role of radiation in heat t ransfer  within the given tempera ture  

range. Plate cooling to the ambient  temperature  due to radiative heat t ransfer  takes place much closer to the point 

of drawing from the slot than does convective. 

Under  conditions of a prevailing radiation effect on the formation of the plate tempera ture  field, the role 

of the optical properties of a medium and of the plate surface in heat t ransfer  increases. As the plate surface 

emissivity increases, the temperature  grows a n d / o r  the coefficient of thermal conductivity of the medium decreases 

(when the role of radia t ion in heat  t ransfer  increases compared  to heat  conduct ion,  i.e., the  Stark number  

increases),  the process of plate cooling is noticeably enhanced (Figs. 2a and 2b, respectively). 

Figure 2b presents the results of calculation of the plate surface temperature  as a function of the parameter  

Z. The  conjugation parameter  Z was first introduced into the theory of heat t ransfer  by A. V. Luikov. Its form 

depends on the specific formulation of the problem and the choice of dimensionless variables. In the general  case, 

it can be represented as [5] 

2L (24) ir = ~ Pr n Re m , 

where L is the plate length and m and n are the constants. The  parameter  Z characterizes the ratio of the heat flux 

escaping from the plate to the boundary  layer to the heat flux spreading in the plate. If Z < Z., where Z. is some 
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critical value, then the problem can be studied in a separate formulation without regard for the temperature fields 
in the plate and gaseous medium. For highly intense heat transfer processes, which include radiative and convective 

heat transfer, the problem should, as a rule, be considered only in a conjugate formulation. 
The presented results indicate a substantial dependence of the temperature distribution of the plate on the 

conjugation parameter. As Z increases, faster transition of the temperature curves to an equilibrium value is 
observed. 

The parameter B characterizes the effect of longitudinal heat transfer with respect to transverse heat 
transfer in the plate, and the smaller is its value, the greater is the role of the transverse heat flux in the formation 

of plate temperature. Since plate cooling takes places from the surfaces, i.e., due to transverse heat transfer, a 
decrease in B leads to more intense plate cooling (Fig. 2d). 

It follows from the analysis of the presented results of the study of radiative and convective heat transfer 

on an infinite moving plate that at high temperatures radiation plays a determining role in plate cooling; due to 
this fact the effect of the optical properties of the medium and surface on heat transfer increases. 

Thus, correct modeling of these problems requires a more accurate allowance for the effect of optical factors 

on the processes of thermal interaction between a gaseous medium and a solid body, i.e., the problem formulation 
should include the equation of radiative transfer in an opaque medium with nonblack boundaries. 

N O T A T I O N  

x, y, coordinates; u, v, velocity components; T, temperature; a, thermal diffusivity; E, density of radiation 
flow on the surface; 2, thermal conductivity; v, kinematic viscosity; a, Stefan-Boltzmann constant; f, dimensionless 
stream function; 0 = T / T o ,  dimensionless temperature; e, emissivity; T 1 = y ( u o / v x )  t'z, ~ = y / H ,  transverse 

dimensionless coordinates; ~ = x / ( H R e ) ,  longitudinal dimensionless coordinate; Re = u o H / v ,  Reynolds number; 
Pr = v |  Prandtl number; Sk = 4aT3~.H/;t| Stark number; Z = ,~,,/2s, conjugation parameter. Indices: s, solid 
body; w, plate surface; ~ ,  undisturbed region; 0, initial value. 
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